Adipose Tissue Deficiency and Chronic Inflammation in Diabetic Goto-Kakizaki Rats
نویسندگان
چکیده
Type 2 diabetes (T2DM) is a heterogeneous group of diseases that is progressive and involves multiple tissues. Goto-Kakizaki (GK) rats are a polygenic model with elevated blood glucose, peripheral insulin resistance, a non-obese phenotype, and exhibit many degenerative changes observed in human T2DM. As part of a systems analysis of disease progression in this animal model, this study characterized the contribution of adipose tissue to pathophysiology of the disease. We sacrificed subgroups of GK rats and appropriate controls at 4, 8, 12, 16 and 20 weeks of age and carried out a gene array analysis of white adipose tissue. We expanded our physiological analysis of the animals that accompanied our initial gene array study on the livers from these animals. The expanded analysis included adipose tissue weights, HbA1c, additional hormonal profiles, lipid profiles, differential blood cell counts, and food consumption. HbA1c progressively increased in the GK animals. Altered corticosterone, leptin, and adiponectin profiles were also documented in GK animals. Gene array analysis identified 412 genes that were differentially expressed in adipose tissue of GKs relative to controls. The GK animals exhibited an age-specific failure to accumulate body fat despite their relatively higher calorie consumption which was well supported by the altered expression of genes involved in adipogenesis and lipogenesis in the white adipose tissue of these animals, including Fasn, Acly, Kklf9, and Stat3. Systemic inflammation was reflected by chronically elevated white blood cell counts. Furthermore, chronic inflammation in adipose tissue was evident from the differential expression of genes involved in inflammatory responses and activation of natural immunity, including two interferon regulated genes, Ifit and Iipg, as well as MHC class II genes. This study demonstrates an age specific failure to accumulate adipose tissue in the GK rat and the presence of chronic inflammation in adipose tissue from these animals.
منابع مشابه
Effects of High Fat Feeding on Adipose Tissue Gene Expression in Diabetic Goto-Kakizaki Rats
Development and progression of type 2 diabetes is a complex interaction between genetics and environmental influences. High dietary fat is one environmental factor that is conducive to the development of insulin-resistant diabetes. In the present report, we compare the responses of lean poly-genic, diabetic Goto-Kakizaki (GK) rats to those of control Wistar-Kyoto (WKY) rats fed a high fat diet ...
متن کاملLong-term renal changes in the Goto-Kakizaki rat, a model of lean type 2 diabetes.
BACKGROUND Type 2 diabetes has become the single most frequent cause of end-stage renal disease. The Goto-Kakizaki rat is currently used as a model for lean type 2 diabetes, but its renal changes have not been fully characterized. We investigated long-term functional and structural renal changes in the Goto-Kakizaki rat to evaluate if this animal model resembles the changes observed in human di...
متن کاملAssociation of Rev-erbα in adipose tissues with Type 2 diabetes mellitus amelioration after gastric bypass surgery in Goto-Kakizaki rats.
We estimated the key molecules related to Type 2 diabetes mellitus (T2DM) in adipose, liver, and muscle tissues, from nonobese diabetic Goto-Kakizaki (GK) rats and their Wistar controls, by computationally analyzing the expression profiles in open source data. With the aid of information from previous reports, Rev-erbα in adipose tissue emerged as one of the most plausible candidates. Here, in ...
متن کاملDiabetes disease progression in Goto-Kakizaki rats: effects of salsalate treatment
This study investigates the antidiabetic effects of salsalate on disease progression of diabetes in non-obese diabetic Goto-Kakizaki (GK) rats, an experimental model of type 2 diabetes. Salsalate was formulated in rat chow (1,000 ppm) and used to feed rats from 5 to 21 weeks of age. At 5 weeks of age, GK and Wistar (WIS) control rats were subdivided into four groups, each composed of six rats: ...
متن کاملSemicarbazide-sensitive amine oxidase/vascular adhesion protein-1 activity exerts an antidiabetic action in Goto-Kakizaki rats.
In this study we have explored whether the bifunctional protein semicarbazide-sensitive amine oxidase (SSAO)/vascular adhesion protein-1 (VAP-1) represents a novel target for type 2 diabetes. To this end, Goto-Kakizaki (GK) diabetic rats were treated with the SSAO substrate benzylamine and with low ineffective doses of vanadate previously shown to have antidiabetic effects in streptozotocin-ind...
متن کامل